

Atoms and Molecules

Grade IX

Question Bank

Answer the following questions

- 1. What is the law of conservation of mass? Who established it?
- 2. What is the law of constant proportion? Who established it?
- 3. In a reaction, 5.3 g of sodium carbonate reacted with 6 g of acetic acid. The products were 2.2 g of carbon dioxide, 0.9 g of water, and 8.2 g of sodium acetate. Show that these observations are in agreement with the law of conservation of mass. sodium carbonate + acetic acid → sodium acetate + carbon dioxide + water
- 4. Hydrogen and oxygen combine in a ratio of 1:8 by mass to form water. What mass of oxygen gas would be required to react completely with 3 g of hydrogen gas?
- 5. What is Dalton's atomic theory?
- 6. Which postulate of Dalton's atomic theory is the result of the law of conservation of mass?
- 7. Which postulate of Dalton's atomic theory can explain the law of definite proportions?
- 8. What is the difference between atomic mass and relative mass?
- 9. Define the atomic mass unit.
- 10. What is a molecule?
- 11. What is an ion?
- 12. What is formula mass?
- 13. Write down the formulae of
 - (i) sodium oxide
 - (ii) aluminium chloride
 - (iii) sodium suphide
 - (iv) magnesium hydroxide

- 14. Write down the names of compounds represented by the following formulae:
 - (i) Al_2 (SO₄) 3
 - (ii) CaCl₂
 - (iii) K₂ SO₄
 - (iv) KNO₃
 - (v) CaCO₃
- 15. What is meant by the term chemical formula?
- 16. How many atoms are present in a
 - (i) H₂S molecule and
 - (ii) PO_4^{3-} ion?
- 17. Calculate the molecular masses of H_2 , O_2 , Cl_2 , CO_2 , CH_4 , C_2H_6 , C_2H_4 , NH_3 , CH_3OH .
- 18. Calculate the formula unit masses of ZnO, Na₂O, K₂CO₃, given atomic masses of Zn = 65 u,

$$Na = 23 u$$
, $K = 39 u$, $C = 12 u$, and $O = 16 u$.

- 19. A 0.24 g sample of a compound of oxygen and boron was found by analysis to contain 0.096 g of boron and 0.144 g of oxygen. Calculate the percentage composition of the compound by weight.
- 20. When 3.0 g of carbon is burnt in 8.00 g of oxygen, 11.00 g of carbon dioxide is produced. What mass of carbon dioxide will be formed when 3.00 g of carbon is burnt in 50.00 g of oxygen? Which law of chemical combination will govern your answer?\
- 21. What are polyatomic ions? Give examples.
- 22. Write the chemical formulae of the following.
 - (a) Magnesium chloride
 - (b) Calcium oxide
 - (c) Copper nitrate
 - (d) Aluminium chloride
 - (e) Calcium carbonate.
- 23. Give the names of the elements present in the following compounds.
 - (a) Quick lime
 - (b) Hydrogen bromide
 - (c) Baking powder
 - (d) Potassium sulphate.
- 24. Calculate the molar mass of the following substances.
 - (a) Ethyne, C₂H₂
 - (b) Sulphur molecule, S₈

() DI 1 1 1 D () () () () () () () () ()
(c) Phosphorus molecule, P_4 (Atomic mass of phosphorus = 31)
(d) Hydrochloric acid, HCl
(e) Nitric acid, HNO ₃
(c) Nittle deld, 111VO3